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AJxm~--A model of droplet deposition from a turbulent gas flow on a vertical plate is I~'Sonted. It is 
based on the stopping distance concept, aJlowing for the different turbulent diffusivities of the gas and the 
droplets. The experimental apparatus is described and the obtained results are presented. Compmison 
between the presented theory and some of the existing experimental data shows satisfactory agreement. 

1. INTRODUCTION 
Solid or liquid particle deposition from a turbulent gas flow on boundary surfaces has been a 
subject of investigation for many years because of its importance in a number of engineering 
problems. In spite of this, the phenomenon has not been sufficiently understood, particulary for 
particles larger than 1 ~m dia the deposition of which is controlled by the particle size and the 
gas flow turbulence. 

A wide review of pertinent bibliography is presented b by McCoy & Hanratty (1977). The 
authors set available experimental results in the form of dimensionless deposition coefficient 
k/u* vs the dimensionless p.article stopping distance S +. The deposition coefficient k expressed 
in m/s is defined by the relationship 

m = k~ [1] 

where m stands for the mass flux of deposited particles and # is the mean particle concen- 
tration within the duct. A dimensionless form of this coefficient is obtained by normalizing it 
with respect to the friction velocity u*. The stopping distance for a particle of diameter dp 
obeying a Stokesian drag relation and having an initial velocity u0 = u* is equal to 

S = o,d/u* [2] 

where pp is the density of the particle and ~o is the gas dynamic viscosity. Hence, the 
dimensionless stopping distance is 

S +  -'- S u * ~  = dp2u*2[)O2pp 

where p~ is the density of the gas. A discussion of the assumptions used to determine the 
stopping distance is given in appendix A. 

Following the McCoy & Hanratty (1977) survey one may distinguish three different 
deposition ranges with different deposition modes. 

The first range concerns very small particles with S+<  0.15. Particle deposition within this 
range is controlled by the molecular diffusion process. 

In the second range, for 0.15 < S  + <22.9, the mass flux of deposited particles is a result of a 
complex gas-particle interaction. The trajectories of the particles become influenced by their 
inertia. The particle deposition coefficient within this range rises very rapidly with increasing 
stopping distance S +. 
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Finally, the third range covers the large particle deposition with S+> 22.9. In this case the 
coefficient k/u* seems to be independent of the stopping distance S',  thus suggesting 
the inertial deposition prevails. Sufficient understanding of this deposition mechanism is impor- 
tant in practice since this type of deposition is very often encountered in different gas- 
droplet flows. 

A number of investigations is devoted to droplet deposition on the duct walls. Among those 
widely known are experimental studies of Alexander & Coldren (1951), Cousins & Hewitt 
(1968), Namie & Ueda (1972). Theoretical analyses were performed, among others, by Hut- 
chinson e t  al. (1971), Namie & Ueda (1973). 

Droplet deposition on a horizontal plate placed in a wind tunnel was investigated by 
Simpson & Broils (1974). The authors suggested a droplet deposition model based on the 
assumed analogy between heat and mass transfer processes. 

Trela (1980) performed the theoretical analysis of the droplet deposition on a vertical plate, 
using the stopping distance concept and allowing for different turbulent diffusivities of the gas 
and the droplets. 

This paper presents the above analysis together with the results of the experimental 
investigation of droplet deposition on the vertical plate. 

2. THEORETICAL ANALYSIS 

The analysis is restricted to deposition of droplets from fully developed turbulent gas flow 
on a vertical plate placed in a duct. The concentration of droplets in the stream is small enough 
to neglect its effect on turbulent fluid properties. Once the droplets strike the surface there is 
assumed to be no rebound or re-entrainment. Brownian motion, electrostatic, lift and thermal 
forces are to be neglected. The lift force had been usually neglected until Rouhiainen & 
Stachiewicz (1970) pointed to its significant role in the deposition of small particles. However, 
for larger particles this effect is diminished in favour of inertia force. A similar conclusion may 
be drawn from the paper of Ganic & Rohsenow (1979). Hence, the lift force is neglected in this 
analysis concerning the large droplets. 

According to the theory of turbulent motion, the size and angular frequency of the turbulent 
eddies depend on the distance from the wall, in such a manner, that towards the wall their size 
diminishes and their frequency increases. While the droplets in the turbulent core ap- 
proximately follow the stream motion when approaching the wall they enter the region of high 
frequency eddies where, due to the droplet inertia, their diffusivities drop to zero. The droplets 
become insensitive to the gas velocity fluctuation and thus droplets sufficiently large may 
penetrate into this region thanks their velocity impulse gained at the edge of this region. 

If at the edge of this region the concentration of the droplets is C, .the mean y-directional 
particle velocity fluctuation imparted by the gas transverse velocity fluctuation is v~, then the 
mass flow rate of the droplets depositing on the wall can be written as 

m = Pv~c [4l 

where P is a deposition probability or the fraction of droplets getting the impulse toward the 
wall, y is the distance from the wall. Deposition in circular channals is mainly controlled by the 
radial droplet velocity fluctuations, thus P equals 0.5 (see appendix 2). In the model under 
consideration the region where the droplet diffusivity drops to zero is assumed to have a 
thickness equal to the stopping distance S +. 

The stopping distance concept postulated first by Friedlander & Johnstone (1957) assumed 
equal diffusivities of both the gas and the droplets. This assumption was criticized by 
Rouhiainen & Stachiewicz (1970), who showed after Tchen (Hinze 1959) that the turbulent eddy 
diffusivity of a droplet larger than 1 v.m dia. is substantially lower than the gas eddy diffusivity. 
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After Tchen the ratio of eddy diffusivities may be written as 

f: v'2 ~2Eo(~o) d¢o 

~G f :  EG(¢o) &o 
= b [5] 

where e~ ec are eddy diffusivities of the particles and of the gas, v~ is the y-directional mean 
gas velocity fluctuation, 71 is the ratio between amplitudes of oscillation of particle and gas, 
Eo(~o) is the LangrangJan energy spectrum of velocity fluctuations, ~o is the angular frequency. 
Based on the experiments of Comte-Bellot (1965) on spectral energy distribution in turbulent 
flow, Namie & Ueda (1973) determined after [5] the ratio E=J~ = b for water droplets, at the 
distance 2y/D = 0.42 from the wall, where D stands for the duct diameter. Their results are 
shown in figure 1. versus the duct Reynolds number. Accordingly to [5] the mean droplet 
velocity fluctuation may be expressed as 

v~ = v ~ V ~  16] 

Both factors on the right depend on the distance from the wall. From the calculations done by 
Namie & Ueda ((1973) figure 13) it is seen that for droplets larger than about 10 ~m dia. the 
ratio ep/eG varies over the duct similarly to the turbulent velocity. Hence, by analogy to the 
turbulent velocity distribution the power law distribution of the ratio ep/~ is postulated. 

/2y \ If. 

with bc standing for ep/~O on the duct axis (figure 1). The exponent n in [7] is a function of the 
Reynolds number and may be determined after Schlichting (1955). 

The next problem to be discussed is the velocity fluctuation v~ within the duct. After Hinze 
((1959), figure 7.32 and 7.34) the ratio v'~/u* equals 0.715 on the duct axis, rises towards the wall, 
at 2ylD == 0.1 reaches its maximum equal to 1.12 and then falls to zero at the wall. At the 
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Figure I. Ratio of eddy diffusivities after Namie and Ueda (1973). 
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distance p+= yu*po]p.o = 30 there is v~/u* = 0.7. Thus it is seen that except for the region 
adjacent the wall, vS/u* does not vary strongly. Accordingly the velocity fluctuation v~ may be 
written as 

v o -  Au* [8] 

where A is a coefficient dependent on the distance from the wall and varies within 0.7 and 1.12. 

In order to determine the mass flux of depositing droplets the concentration of droplets at 
one stopping distance from the wall should be evaluated. Since turbulent momentum and mass 

transfer are accomplished by the eddies it seems reasonable to assume the concentration 
distribution of droplets similar to the velocity distribution in the turbulent core, i.e. for 
s <- y <- 1:)/2 (see appendix C). 

Therefore it is assumed that 

. . . .  [91 
Cc Uc 

where index c denotes values on the duct axis. Based on the above assumption the ratio of the 
average concentration in the channel to the maximum concentration on the axis is given as 

2n 2 
= B [10] 

c~ (n + l)(2n + 1) 

Transforming [4] with the help of [6]-[10] one gets the mass flux expressed as 

Au 2y - -_  
m = 0.5--if-  - g  x/bcc [l l l  

from which the transfer coefficient k/u* appears to be 

k m = 0.5 A (_~) ' ' '"  u = eu* -g r E .  [121 

The above equation determines the dimensionless deposition coefficient k/u* for a vertical plate 

situated at the distance y from the wall. For the plate placed at the duct centre 

kc Ac - -  
u--- ~ = 0.5 -ff  v'b~. [13] 

For the duct Reynolds number Reo = aDo6/t~ = 5 × 10 4 to 2 × 105 the value of the exponent 
n in [9] and [10] is about 7 after Schlichting (1955), thus following [10] coefficient B = 0.816. For 

the plate situated at the duct centre, where A~ - 0.715 a simple relation holds 

k~ = 0.44 k/b-~,.. [14] 

The model described above accounts for the variations of the deposition coefficient k in the 

duct. Following [12] and [13] one obtains 

k A //2y "~ ,.~/. 
k , . -  Ac \ -D /  " [15] 
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Since, as mentioned above, beyond the wall adjacent region A/A~ > 1, [15] suggests a slight 
maximum in the ratio k/kc. Nevertheless, for the region 0.1 < 2 y / D < I  this ratio may be 
assumed practically constant and equal to 1. When the plate is moved towards the duct wall and 
finally coincides with it the ratio of the deposition coefficients becomes 

kc A~ \D/  [16] 

since in this case the model assumes y = S. In the above, index w denotes values on the duct 
wall and index S value at the distance S from the wall. 

It should be noted that the analysis concerns the local values of the coefficient k. For the 
plate, the average value of the coefficient k, may be obtained by integrating the basic equation 
[12] with respect to the plate height. 

3. E X P E R I M E N T A L  A P P A R A T U S  

The experiments were performed on the apparatus shown schematically in figure 2. 
Two-phase air-water droplets mixture was produced by four pneumatic nozzles supplied with 
water and air at constant 2 x 105 Pa pressure. The nozzles were uniformly mounted in the tunnel 
walls of 0.344 x 0.395m in size. The air flow was blown by a fan at a rate measured by an 
Alcock !aminar flow meter placed at the air intake. The deposition investigation were clone on a 
vertical plate with the height/-/= 0.15 m and the length L = 0.3 m placed 4.28 m away from the 
nozzles. The droplets deposited onto the plate formed a continuous film there which was 
drained to the collection flask outside the tunnel. The experiments were carried out at the 
two-phase medium temperature t=9-11°C. The main measured quantities were: droplet 
deposition rate m, mean droplet concentration ~, mass flow rate of the air Wc,, mass deposition 
rate on the tunnel walls Wt~, pressure drop in the tunnel, mass flow rate of water injected into 
the tunnel WL and droplet size distribution. 

The mean droplet concentration was calculated as 

~ = WL2 
W~JpL + Wdoo [17] 

t 
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Figure 2. General arrangement of the test rig. 
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where WLE is the mass flow rate of entrained droplets, PC is the density of water. The mass flow 
rate WLE was determined as 

WLE = WL- WLr-  W~(X . -  Xo) [18] 

where Xo and X, are air humidities at initial and final mist conditions. Droplet size measure- 
ment was made by means of magnesium oxide coated slides with a special slide holder. 

The deposition investigations were performed at the mean velocity in the duct t~ = 1- 
14.1 m/s and corresponding Reynolds number ReD= t~Dp6/~,6 = 25000-360000 based on the 
duct hydraulic diameter D = 0.365 m. The maximum droplet concentration during these in- 
vestigations reached 0.035 kg/m a. 

The investigations were always started from the maximum air velocity thus assuring rapid 
wetting of the plate and stabilization of the film flow over the tunnel walls. The experiments 
were continued only with the film entirely wetting the plate. 

Otherwise, if dry spots appeared, the experiments were stopped and the plate carefully 
cleaned. 

4. RESULTS AND DISCUSSION 

The experiments were carried out in two stages. In the first velocity profiles, intensity of 
turbulence, friction factor of the tunnel, droplet size measurement and the droplet deposition 
onto the vertical plate situated at the tunnel centre were investigated. The pressure drop 
measurements of dry air flow revealed a very high roughness of the tunnel resulting in the ratio 
of Fanning friction factors, flf~ = 100. The smooth tube friction factor f~ was determined from 
the Blasius formula 

fs = 0.0791 ReD °25 [19] 

It was also used to calculate the friction velocity 

u* = ftX/ fs/2 [201 

over the entire range of the experiments. 
An example of the velocity profiles and turbulence level measurements is shown in figure 3. 

They were done by means of DISA 55M anemometer system. An example of droplet size 

distribution for one selected air flow velocity is shown in figure 4. Moreover, figure 5 shows the 
mean droplet diameter distribution (arithmetic diameter d~o, volumetric diameter d3o and Sauter 
diameter d32) vs air velocity. Finally, the main droplet deposition results are plotted in figure 6. 

The second stage of experiments cover droplet deposition measurements on the vertical 
plate placed at the tunnel center and at a distance y =0.063m from the side wall. The 
measurements were taken after the tunnel walls had been carefully smoothed down. In 
consequence, the friction factor ratio decreased substantially to firs = 1.5-1.7. The results of 
these investigations are shown in figure 6 together with the theoretical values of the coefficient 
k/u* calculated after the model presented in this paper, for the plate situated at the tunnel 
centre. Making allowance for different droplet size deposited on the plate, the weighted average 

of the deposition coefficient Flu* was calculated as 

k . ~ N  

z., d~ ~ a.  ~ No [2t] 
AN 

u* ~] an d"~ No 

where dp 3 AN/No stands for the mass fraction of the droplets of the diameter d r in the total 
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Figure 3. Intensity of turbulence and velocity distribution in the wind tunnel. 

amount of droplets N~ This fraction was determined from the droplet size measurements. In 
the calculations performed after the above formula [21] the relation [13] was used for droplets 
having dimensionless stopping distance S + larger than 20. Since in the spectrum of the 
deposited droplets there was always a slight fraction of droplets for which S÷ < 20, the relation 

k 10_4 S+2 u-; = 3.25 x [22] 
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Figure 4. An example of droplet diameter distribution. 
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Figure 5. The effect of the mean velocity on the mean droplet diameters. 

was used, which after McCoy & Hanratty (1977) best fills the experimental data for particles in 
the range 0.15 < S ÷ <22.9. 

However it holds for the deposition on the duct walls and hence its use for axially situated 
plates needs a certain correction. This may be done, for instance, by assuming for smaller 
droplets (S ÷ < 20) the same distribution of the coefficient k/u* as for larger (S ÷ > 20), which is 
expressed by relation [15]. Finally in the calculations the following formula was used 

k - . .  I.S/n 

Calculations of the deposition coefficient made after [21] using the relationships [13] and [23] 
revealed that a more smooth curve of the deposition coefficient is obtained when the boundary 
value of the stopping distance S ÷ is equal to 20 rather than 22.9 as suggested by McCoy & 
Hanratty (1977). This conclusion may be justified also due to the scatter in experimental data in 
McCoy & Hanratty (1977) figure 1. 

Fingure 6 suggests a satisfactory agreement between the predicted and experimental values 
of the coefficient k/u* for Reo>80000 (S+>20), i.e. within the area of validity of the 
presented model. The theoretical and experimental values of the coefficient k/u* rise very 
rapidly with increasing air velocity and reach a maximum value of about 0.15 at Reo----80 000 
and afterwards a slight decrease is observed. This is in agreement with the conclusion drawn by 
McCoy & Hanratty (1977) that for particles having S ÷ > 22.9 the transfer coefficient appears to 
be insensitive to the particle diameter or fluid velocity. 

The experimental results confirm also the conclusion drawn from [ 15] that the value of k/u* 
is practically constant in the channel except in the region close to the wall, since actual 
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Figure 6. Comparison between theoretical and experimental values of k/=*. 

differences in the values of k/u* for the plate at the channel centre and at the distance 
y--0.063 m from the wall are small and lie within the measurement error range. For ReD > 
80 000 the tunnel roughness did not affect the deposition coefficient. 

The values of the deposition coefficient obtained in this study satisfactorily agree with those 
reported by McCoy & Hanratty (1977) and Cousins & Hewitt (1968). McCoy & Hanratty 
suggested k/u* = 0.17 for particles with stopping distance larger than 22.9. The experiments 
made by Cousins & Hewitt (1968) on vertical tubes yielded k/u* = 0.068 for the 0.0318 m (1:/4") 
tube and k/u* = 0.095 for 0.00953 m (33/4 ~) tube. Drop size measurement revealed the Sauter 
mean dia. d32 ranged from 40-70/zm for the smaller tube and 70-110/zm for the larger one. In 
the present study the Sauter mean dia. d32 varied within the same range as for the smaller tube 
(figure 5) and the transfer coefficient k/u* was found to be very close to that of Cousins & 
Hewitt (1968). 

For the sake of comparison the distribution of the coefficient k/u* calculated after the 
method by Simpson & Broils (1974) is also plotted in figure 6. When the simplest Reynolds 
analogy between heat and mass transfer is combined with the formula describing heat transfer 
on a plate and the boundary layer on the plate is assumed entirely turbulent due to the stirring 
action of the droplets the Simpson and Broils model results in the relationship 

D~0.125 

= 0.327 ~ .  [241 
L 

The calculations according to this formula were performed assuming the duct diameter 
D = 0.365 m and different values of the ratio LID, where L is the plate length. Plate Reynolds 
number was calculated as ReL-- 1.25ziLpG/~o. Even if the analogy between heat and mass 
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transfer in this case may be objected to, the results shown in figure 6 are in favour of this model 
at least as a first approximation for the region where the inertial deposition prevails. 

5. SUMMARY 

The paper presents the deposition model developed for particles having the dimensionless 
stopping distance S ~- larger than 20. The model assumes the existence of the boundary region of 
the thickness y÷= S ÷ where the large inertia particles do not follow the stream motion and 
are projected through it due to their initial velocity impulse gained at the edge of this region. 
The model allows determination of the deposition coefficient for a vertical plate situated in a 
duct at an arbitrary distance from the duct wall and also on the vertical duct wall itself. 

The experiment confirmed the validity of this model in the range under investigation, i.e. for 
Reo = 8 × 104 to 36 x 104, corresponding approximately to the stopping distance range S ÷ = 20- 
150 based on the mean droplet size d3o = 45 p.m. 
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APPENDIX A 

The stopping dis tance 

The boundary layer adjacent to a surface is characterized by the existence of fluctuations 
caused by the incursion of turbulent eddies from the turbulent core. However, such fluctuations 
are strongly damped in the vicinity of the wall. It is assumed that at a certain distance from the 
wall they exert little influence on the motion of the particles. Thus, the immediate wall region 
may be described as exerting only viscous drag on the particles. The equation of motion for 
such particles is thus 

mp "~t = - fUp [All 

where the Stokes friction coefficient f is customarily used. The integration of [A1] gives 

up = Uo e -'/" [A2] 

and 

X = Uo~'(l - e - ' l q  [A31 

for the velocity and displacement, respectively. The characteristic time ¢ = p;,dp2/18/~G. As 
t i t  - ,  ~ the distance that the particle penetrates (stopping distance) is given by 

S = PJ'd2U° 
1 8 ~  " [A4] 

It is known that the Stokes law of friction is valid, in general, for Rep < 1. This condition 
was satisfied in the experimental investigation. For example, at ambient temperature, for 
dp=50~m and ReD=105 one obtains; A=0.7, u*=0.188mls, b = 0 . 1 8  and v~= 
14 x 10 "~ m2/s., 

Thus the droplet Reynolds number 

Rep = v '~lp = Au*X/ 'b  dp = 0.2. [A51 
RG PG 

It is also easy to show that an error made when the Stokes law is applied for Rep > 1 is 
relatively small. Following Simpson & Broils (1974) the particle drag coefficient CD (which is 
related to f) may be given by 

24 
CDs=k-~e p (Stokes law) for Rep<0.4207 [A6] 

26.9 
CD --- ~ for Rep -> 0.4207 [A7] r ~ p  

and, hence the error is determined by the ratio 

CD = 1.12 Re °'133 [A8] 
Cos 

The calculations prove that even at the Reynolds number as high as Rep = 10 the actual 
value of drag coefficient is only 50% higher than that calculated by Stokes law. 
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This fact justifies the application of Stokes law at R% > 1. Some examples of such approach 
are the papers by McCoy & Hanratty (1977), Liu & Ilori (1974). 

APPENDIX B 

Deposition probability 

Deposition probability may be expressed as a product 

P = P1P2 [B 11 

where Pi is the fraction of particles getting the velocity impulses towards the wall, P2 is the 
fraction of particles reaching the wall due to these impulses. Deposition in circular channels is 
mainly controlled by the radial particle velocity fluctuations, thus Pt equals 0.5. Determination 
of the probability P2 is more complex. Since it has been assumed that the particles are 
insensitive to the eddies at y < S then P2 is inversely proportional to the probability of the 
particle collision with each other during "a free flight" to the wall. This, in turn, is proportional 
to the stopping distance and the particle concentration. 

Trela (1981) showed that for a low particle concentration the probability P2 decreases when 
the stopping distance S ÷ increases. This fact may be expressed for S ÷ > 20 by the relation 

P2 = aS ÷"~ [B2] 

where coefficients a and m equal 1.35 and - 0.1, respectively. It is seen that P2 slightly depends 
on the exponent m. Therefore for relatively low values of S ÷ P2 approximately equals 1.0 what 
leads to P = 0.5. 

APPENDIX C 

Concentration profile 

The approach presented in this paper resembles the integral analysis of the boundary layer 
where in order to get the shear stress (heat flux) at the wall one has to assume the velocity 
(temperature) distribution function in the boundary layer. It is shown by Schlichting (1955) that 
the quality of the results depends to a great extent on the assumptions which are made for this 
function. 

If a rough approximation is desired, it is necessary to satisfy only the boundary conditions 
for the function. A good example is the use of power-law velocity profile in the analysis of the 
boundary layer although it has two obvious difficulties; the velocity gradients at the wall and 
that at ~ are incorrect. 

Beai (1970) used the power-law profile for particle concentration in the channel turbulent 
core. He has also showed that this assumption leads to the linear particle mass flux distribution 
in this region, what has been frequently used. 


